Locally Adapted Microstructures in an Additively Manufactured Titanium Aluminide Alloy Through Process Parameter Variation and Heat Treatment

نویسندگان

چکیده

Electron beam powder bed fusion (PBF-EB/M) has been attracting great research interest as a promising technology for additive manufacturing of titanium aluminide alloys. However, challenges often arise from the process-induced evaporation aluminum, which is linked to PBF-EB/M process parameters. This study applied different volumetric energy densities during processing deliberately adjust aluminum contents in additively manufactured Ti-43.5Al-4Nb-1Mo-0.1B (TNM-B1) samples. The specimens were subsequently subjected hot isostatic pressing (HIP) and two-step heat treatment. influence parameter variation treatments on microstructure defect distribution investigated using optical scanning electron microscopy (SEM), well X-ray computed tomography (CT). Depending content, shifts phase transition temperatures could be identified via differential calorimetry (DSC). It was confirmed that after treatment strongly parameters associated evaporation. feasibility producing locally adapted microstructures within one component through subsequent demonstrated. Thus, fully lamellar (FL) nearly (NLγ) two adjacent areas adjusted, respectively. article protected by copyright. All rights reserved.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling of Processing-Induced Pore Morphology in an Additively-Manufactured Ti-6Al-4V Alloy

A selective laser melting (SLM)-based, additively-manufactured Ti-6Al-4V alloy is prone to the accumulation of undesirable defects during layer-by-layer material build-up. Defects in the form of complex-shaped pores are one of the critical issues that need to be considered during the processing of this alloy. Depending on the process parameters, pores with concave or convex boundaries may occur...

متن کامل

In situ study of dynamic recrystallization and hot deformation behavior of a multiphase titanium aluminide alloy

multiphase titanium aluminide alloy Klaus-Dieter Liss, Thomas Schmoelzer, Kun Yan, Mark Reid, Matthew Peel, Rian Dippenaar, and Helmut Clemens Australian Nuclear Science and Technology Organisation, PMB 1, Menai, New South Wales 2234, Australia Department of Physical Metallurgy and Materials Testing, Montanuniversität, A-8700 Leoben, Austria Faculty of Engineering, University of Wollongong, Wol...

متن کامل

Survey and Study of Machinability for Titanium Alloy Ti-6Al-4V through Chip Formation in Milling Process

Most of the materials used in the industry of aero-engine components generally consist of titanium alloys. Advanced materials, because of their excellent combination of high specific strength, light weight and general corrosion resistance. In fact, chemical wear resistance of aero-engine alloy provides a serious challenge for cutting tool material during the machining process. The reduction in ...

متن کامل

Additively Manufactured Porous Biomaterials and Implants

Recent advances in additive manufacturing (AM) techniques (otherwise known as 3D printing) have enabled fabrication of a new class of porous biomaterials (Figure 1) with arbitrarily complex and precisely controlled topologies that e.g. resemble the geometry and micro-architecture of (trabecular) bone. Since the geometry of scaffolds and biomaterials is an important factor in bone tissue regener...

متن کامل

Survey and Study of Machinability for Titanium Alloy Ti-6Al-4V through Chip Formation in Milling Process

Most of the materials used in the industry of aero-engine components generally consist of titanium alloys. Advanced materials, because of their excellent combination of high specific strength, light weight and general corrosion resistance. In fact, chemical wear resistance of aero-engine alloy provides a serious challenge for cutting tool material during the machining process. The reduction in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advanced Engineering Materials

سال: 2022

ISSN: ['1527-2648', '1438-1656']

DOI: https://doi.org/10.1002/adem.202200917